
Pronto: Easy and Fast Persistence for Volatile
Data Structures

Amirsaman Memaripour∗

University of California, San Diego
amemarip@eng.ucsd.edu

Joseph Izraelevitz
University of Colorado Boulder
joseph.izraelevitz@colorado.edu

Steven Swanson
University of California, San Diego

swanson@cs.ucsd.edu

Abstract
Non-Volatile Main Memories (NVMMs) promise an op-
portunity for fast, persistent data structures. However,
building these data structures is hard because their data
must be consistent in the wake of a failure. Existing meth-
ods for building persistent data structures require either
in-depth code changes to an existing data structure using
an NVMM-aware library or rewriting the data structure
from scratch. Unfortunately, both of these methods are
labor-intensive and error-prone.

Pronto is a new NVMM library that reduces the pro-
gramming effort required to add persistence to volatile
data structures using asynchronous semantic logging
(ASL). ASL is generic enough to allow programmers
to add persistence to the existing volatile data struc-
ture (e.g., C++ Standard Template Library containers)
with very little programming effort. Furthermore, ASL
moves most durability code off the critical path, and
our evaluation shows Pronto data structures outperform
highly-optimized NVMM data structures written with
other libraries by a large margin.

CCS Concepts. • Hardware → Emerging tech-
nologies; • Software and its engineering → Soft-
ware libraries and repositories; • Information sys-
tems → Data structures; • Computer systems
organization → Processors and memory architec-
tures.

Keywords. Non-volatile Memory, Persistent Memory,
Persistent Objects, Data Structures, Storage Systems,
Snapshots, Asynchronous Logging, Semantic Logging

∗The author is now at MongoDB, Inc.

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the owner/author(s).
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7102-5/20/03.
https://doi.org/10.1145/3373376.3378456

ACM Reference Format:
Amirsaman Memaripour, Joseph Izraelevitz, and Steven
Swanson. 2020. Pronto: Easy and Fast Persistence for Volatile
Data Structures. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20), March
16–20, 2020, Lausanne, Switzerland. ACM, New York, NY,
USA, 18 pages. https://doi.org/10.1145/3373376.3378456

1 Introduction
Emerging non-volatile main memory (NVMM) technolo-
gies such as 3D XPoint [14, 23] offer higher density than
DRAM with comparable latency and bandwidth, allow-
ing computer architects to attach them to processors via
the memory bus. Programs can then use load and store
instructions to access persistent data directly. Bypass-
ing the storage stack and directly accessing NVMM is
essential for unleashing the performance benefits that
NVMMs offer [48]. However, this strategy requires care-
ful reasoning to ensure a consistent-state in NVMM
in the wake of a crash — data in the caches will not
survive [28, 36].

NVMMs appear to be an exceptional opportunity for
building fast, persistent, data structures, and researchers
have approached this problem in two ways. NVMM
failure-atomicity libraries (e.g., [11, 51]) allow program-
mers to delineate failure-atomic updates to persistent
data - writes within the update become persistent all at
once. By identifying failure-atomic code regions and per-
sistent writes, programmers can adapt an existing data
structure to NVMM using these libraries [6, 12]. Alter-
natively, researchers have built custom data structures
from scratch for NVMM (e.g., [43, 50]). Unfortunately,
both of these design options are labor-intensive, require
detailed program knowledge, and are a fertile source of
subtle errors [54]. Furthermore, these options effectively
ignore the wide range of useful, volatile data structures
currently available (e.g., the C++ Standard Template
Library or the Java Collection data structures).

In this work, we propose Pronto, a library that reduces
the programming effort required to add persistence to
off-the-shelf, volatile data structures, preserving the orig-
inal operation of the data structure and, for concurrent
data structures, their concurrency scheme. Furthermore,

https://doi.org/10.1145/3373376.3378456
https://doi.org/10.1145/3373376.3378456

Pronto minimizes the performance overhead of this trans-
formation by moving almost all durability-related code
off the critical path.

Pronto transforms the volatile data structure by chang-
ing every operation on the original data structure into a
failure-atomic operation. Adding Pronto to an existing
volatile data structure is simple. For sequential data
structures, adding Pronto requires only adding a thin
wrapper class around the data structure’s API and using
the Pronto allocator. For concurrent data structures,
adding Pronto also requires one additional line of code
per API method.

Pronto uses a novel mechanism called Asynchronous
Semantic Logging (ASL) to convert each operation on a
volatile data structure into a failure-atomic operation.
ASL records the arguments and execution order of each
update operation performed on the data structure rather
than recording the details (e.g., pointer updates) of how
the data structure changed. For instance, ASL would
record the insertion of an item into a binary tree rather
than recording how the tree’s internal structure changed.
ASL is analogous to operation logging in database sys-
tems [42], but addresses the specific needs of logging for
persistent, in-memory data structures. ASL uses back-
ground threads, which run in parallel with the program
(foreground) threads, to create and persist the logs off
of the critical path. To recover from program or system
failures, Pronto plays back semantic logs for a structure
to reconstruct its most recent consistent state (read-only
operations need not be logged at all in Pronto). To limit
the cost of replaying semantic logs, Pronto creates peri-
odic, persistent copies of the data structure on NVMM
(i.e., periodic snapshots).

In this paper, we describe the Pronto system and
demonstrate that many common, non-persistent data
structure implementations (e.g., RocksDB’s MemTable
and containers from the GNU C++ Standard Template
Library) are readily amenable to a Pronto adaptation
with minimal programming effort, and, furthermore,
these new Pronto adaptations perform better than other
failure-atomic variants.

This paper makes the following contributions:

∙ It introduces ASL, a new software mechanism that
reduces the programming effort and performance
overhead of adding failure-atomicity to volatile
data structures.

∙ It explores the design decisions and correctness
constraints of ASL in the context of NVMMs.

∙ It provides an implementation for Pronto and eval-
uates its performance.

∙ It demonstrates how to use Pronto to convert both
sequential and concurrent volatile data structures
into persistent ones with only a few lines of code.

The rest of this paper is organized as follows. Sec-
tion 2 provides some background on NVMMs and moti-
vates Pronto. We discuss the design and implementation
of Pronto in Sections 3 and 4, respectively. Section 5
presents the evaluation results and puts Pronto’s per-
formance in perspective. We discuss related work in
Section 6 and conclude in Section 7.

2 Background and Motivation
Non-volatile memories promise to fill the gap between
volatile memory and disks (both hard and solid-state)
by offering byte-addressability, DRAM-like latency and
bandwidth, and persistence [4, 47]. NVMMs based on
battery- or flash-backed DRAM [40] have been available
for many years, and cheaper main memory modules
based on 3D XPoint [24, 39] have entered the market
recently [23, 41]. These emerging NVMMs offer higher
density, higher latency, and lower bandwidth [8, 35]
than DRAM-based devices. Thus, we anticipate hybrid
memory systems with both DRAM and NVMM.

NVMMs are fast enough to sit on the processor’s
memory bus [3], providing software with direct access to
NVMM via load/store instructions. Since CPU caches
are volatile, stores to non-volatile memory do not become
durable until the cache writes back the affected data.
Cache evictions are usually transparent to software, so
programmers must use cache flush instructions to trigger
write-backs and memory barriers to wait for the write-
backs to complete [2, 22, 47].

Cache-flushes and memory barriers are necessary build-
ing blocks, but they do not suffice for providing the
failure-atomicity that applications need to make use
of NVMMs. Below, we describe the costs of provid-
ing failure-atomicity for programs with direct access
to NVMM.

2.1 Programming Cost
Bypassing the filesystem to directly access NVMM via
load/store instructions lets programmers fully exploit
the performance benefits of NVMMs, but it introduces
a series of challenges. Programs could lose part of an
update to a persistent data structure during a system
failure (e.g., power loss) because existing hardware does
not support flushing multiple cache lines atomically: an
ill-timed failure could cause permanent data inconsis-
tency.

To avoid this issue, persistent data structures must be
able to recover to a consistent state after a crash. NVMM
transactional memory libraries [11, 36, 51] embody the
most common approach to ensure failure-atomicity of
updates to a persistent data structure: fine-grain log-
ging of how the data structure changes. Unfortunately,
annotating existing data structures with these libraries

64 128 256 512 1024 2048 4096 8192

Value size (bytes)

0

25

50

75

100

P
er

ce
nt

ag
e

of
to

ta
l

ex
ec

ut
io

n
ti

m
e

B-Tree Management Failure-Atomicity

Figure 1. Latency breakdown of inserts to PMEMKV

is labor-intensive and error-prone as programmers are
required both to annotate every persistent data update
and reason about failure-atomic update boundaries. As
an example, we had to rewrite almost all of a volatile
B+Tree to make it persistent using Intel’s popular Per-
sistent Memory Development Kit (PMDK) library [25].
For more complicated data structures in use today (e.g.,
those in the C++ Standard Template Library), adding
all these annotations without error would be an ex-
tremely invasive change to a code base that is already
very complex and highly-optimized for volatile operation.
Indeed, the difficulty of correctly adding annotations has
spawned research into new debugging tools for finding
these errors [21, 31, 34, 54].

2.2 Performance Cost
The cost of enforcing failure-atomic updates for NVMM
data structures is large. Logging for failure-atomicity
libraries adds overhead in the form of stores to trans-
action metadata, additional cache-flushes, and memory
barriers [10, 56]. Moreover, the cost of fine-grain logging
scales with the complexity of persistent data structures.
Logging also limits the processor’s ability to reorder
instructions [45], further hurting performance.

To explore this cost, we measured it in PMEMKV [26],
a persistent key-value store that uses a B-Tree and stores
its last level in NVMM [53]. PMEMKV uses the trans-
action facility in PMDK [25] to transactionally update
the B-Tree.

We instrumented PMDK and PMEMKV to gather
detailed latency numbers for inserting one million key-
value pairs to PMEMKV using traces from YCSB [13].
Figure 1 reports the relative latency of managing the
B-Tree data structure and ensuring its failure-atomicity
(e.g., logging, persistent allocation, and transaction man-
agement) for value sizes ranging from 64 to 8192 bytes.
Failure-atomicity increases the latency of insert opera-
tions by 26% to 106%.

Conventional NVMM transaction libraries put all
the overhead of ensuring failure-atomicity (e.g., logging,

cache-flushes, and barriers) on the critical path, so ap-
plications bear the full cost. Pronto’s goal is to hide this
overhead by moving it off the critical path.

Next, we modified PMEMKV to disable transaction
management and logging. This modified version does
not ensure the durability and consistency of updates
to the NVMM-resident data, but still adopts PMDK’s
persistent memory allocator for managing the last level
of the B-Tree. Comparing the throughput of the modified
and original versions of PMEMKV lets us estimate the
performance boost that we can achieve by moving logging
and transaction management off the critical path. We
observe that the modified version (with no logging and
transaction management) runs twice as fast.

3 Design
Pronto adds persistence to volatile data structures with
minimal code changes and moves the cost of durability
off the critical execution path. It accomplishes this by
creating asynchronous semantic logs (ASLs) that allow
for the reconstruction of the latest consistent state of
the data structures during recovery from a failure. The
semantic logs record every operation invoked on the ob-
ject along with the operation’s arguments. This logging
occurs asynchronously and in parallel with the actual
operation.

In terms of the programming cost, ASLs are useful
since they avoid the need to log fine-grained changes to
the underlying data structure. With semantic logging,
we only need to log the method call and its arguments —
replaying operations after a failure is sufficient to recover
the data structure’s state. Code changes, as a conse-
quence, are minimal — for sequential data structures,
we only need to intercept the public methods of the data
structure and ensure that it uses Pronto’s allocator to
allocate its internal structures. Adding ASLs to concur-
rent data structures is nearly as easy: it requires adding
one additional line of code to each public method.

Our ASLs also reduce the performance cost of persis-
tence by logging asynchronously, especially for slower
NVMMs. By decoupling log creation from operation
execution and performing logging in parallel, ASL can
drastically reduce the performance cost of persistence.
In fact, if the logging is quick enough, Pronto can almost
completely hide the overhead of logging by moving it off
the critical path.

Pronto is broadly applicable to most data structures.
The only restriction is that the structures must meet two
criteria that are common to most data structures. First,
the data structure and its interface must be properly
encapsulated so that modifications only occur through
public methods and deterministic so that the externally-
visible effect of those methods is only a function of the

current state of the data structure and the arguments
to the method. In effect, this means that the methods
cannot read or write global variables. Second, if the
data structure is thread-safe (i.e., supports concurrent
accesses), it must be linearizable [19, 38].

An update to the data structure is linearizable if the
data structure’s synchronization mechanisms (e.g., locks)
ensure that the effect of multiple (potentially parallel)
updates is the same as those updates being applied one
at a time in some order [19]. Linearizability is the com-
mon correctness condition for concurrent data structures,
and most practical data structures meet this condition
(e.g. [17, 32, 49]). For any linearizable data structure that
uses locks to order updates that do not commute, Pronto
provides failure-atomicity with no loss of concurrency.

These requirements are not onerous in practice, since
they closely correspond to common data structure design
practices. Most container libraries (e.g., the C++ STL)
and many custom data structures (e.g., the core data
structures of RocksDB [16] and Memcached [18]) meet
them.

This section describes the design of Pronto. We begin
with a description of the Pronto system and runtime.
Next, we describe Pronto’s programming interface and
elaborate on the durability and concurrency semantics
that Pronto offers. Finally, we give examples of using
Pronto for both sequential and concurrent data struc-
tures.

3.1 Pronto System Overview
The Pronto runtime maintains three entities for each
persistent data structure it manages. An asynchronous
semantic log, a volatile online image of the data structure
in volatile memory, and a persistent snapshot of the data
structure. This subsection describes Pronto’s runtime in
terms of its ASL, memory management, and snapshot
mechanisms.

3.1.1 Asynchronous Semantic Logging. Pronto’s
semantic logs record the high-level updates that the data
structure undergoes rather than the fine-grain changes to
the memory that holds it. For example, Pronto only cre-
ates a single log record for inserting a new key-value pair
to a B-Tree, unlike undo-logging that requires recording
the fine-grain changes to the B-Tree’s structure that hap-
pen as part of the insert. Since recording the high-level
operations is usually fast, ASL is generally more efficient
than normal write-ahead logging.

For clarity, we describe ASL in terms of method in-
vocations (or “updates,” read-only operations need not
be logged) on container-style objects (e.g., linked lists,
hash maps, and vectors), but ASL will work for any
deterministic, linearizable (or sequential) data structure

with a well-defined set of operations that Pronto’s ASL
can record.

For every operation that modifies the data structure,
Pronto creates a semantic log entry, a persistent record
that records the method invoked (e.g., an insert) and a
copy of its arguments.

Besides an ASL and a persistent snapshot, Pronto
maintains a volatile online image for each data structure.
The online image reflects the current state of the data
structure. In addition to logging operations, Pronto ap-
plies each operation to the volatile version and read-only
operations run against it.

After a crash and upon restart, Pronto can recreate
the volatile online image (i.e., recover the last consistent
state of the data structure) by replaying the ASL. A
snapshot mechanism described below keeps the cost of
recovering the volatile online image manageable.

The key optimization that Pronto makes is to perform
logging in an ASL thread that runs in parallel with the
foreground update to the online image. If applying an
update to the online image is slower than logging its
arguments, Pronto can entirely hide the ASL’s latency.

Under ASL, an operation is not complete until both
the update to the volatile online image is finished and
the semantic log entry is persistent. To enforce this re-
quirement, the foreground thread must wait for the ASL
thread to finish logging before any of the update’s effect
becomes visible to other threads. In practice, this means
synchronizing with the ASL thread before releasing any
lock that protects the operation’s effects (changes) from
being visible to other concurrent operations. This guar-
antees that the commit order of ASLs agrees with the
execution order of updates to the data structure that do
not commute (e.g., insert(𝐾1, 𝑉1) and erase(𝐾1)).

Figure 2 illustrates the parallel execution of the fore-
ground thread (bottom) and ASL thread (top). ASL
operations are blue, DRAM updates are green, and syn-
chronization is red. Begin marks the beginning of both
logging and update execution. Commit marks completion
of the operation. The small orange box in the foreground
thread is the commit point for the ASL log entry when
the entry becomes persistent.

Figure 3 compares ASL with undo-logging and redo-
logging [36]. ASL allows executing the Logging code in
parallel with the Operation and decreases the execution
complexity of memory barriers and cache-line flushes in
the critical path, thereby reducing the total overhead of
adding persistence to volatile data structures.

3.1.2 Memory Management and Addressing.
Pronto provides a volatile memory allocator that man-
ages a contiguous region of memory to hold the online,
volatile image. Data structures must use the allocator
for any internal objects (e.g., nodes in a linked list) and

Asynchronous Semantic Logging

Volatile Operation

Begin Commit

Time

Foreground

Background

Commit Semantic LogSynchronization

Figure 2. Communications between the foreground and
background execution paths to guarantee every commit-
ted semantic log represents a completed update opera-
tion.

Time

Undo Logging

F + D

F + D

Redo Logging

F + D

F

F + D

F

ASL

Logging

Operation

F Fence

D Durability

Figure 3. Comparing the execution path of ASL against
undo-logging and redo-logging. The operation represents
a deterministic update, such as inserting a new node to
a tree.

applications must use the allocator for objects they pass
to data structure methods via a pointer. This require-
ment ensures that the data structure and all memory
reachable from it are fully contained within the memory
region the allocator manages.

The online image of a data structure uses native point-
ers for addressing, so it is not relocatable (i.e., it must
always reside at the same virtual address). This is not
a fundamental limitation of Pronto or ASL, but it is
necessary to support the easy conversion of volatile data
structures into persistent data structures without com-
piler support. Previous work has shown how to ensure
relocatability with a compiler [37]. Those techniques
would apply to Pronto. We describe the allocator in
detail in Section 4.2.

Pronto also manages NVMM space for semantic logs
and snapshots. It allocates space by mapping NVMM
files into the program’s address space. ASL uses the
mapped NVMM space as a circular buffer and writes
over old semantic log entries that precede the latest
snapshot. Section 4.1 provides additional details.

3.1.3 Snapshots. Pronto provides a snapshot mecha-
nism that works closely with its volatile memory allocator
to take periodic snapshots of online images. Snapshots,
which are durably stored on NVMM, reduce the ASL
storage requirements and improve recovery time since
Pronto only needs to store ASL entries since the last
snapshot and replay those entries after a crash.

Snapshots contain a persistent copy of the (volatile)
memory pages used by the volatile online images of the
data structures along with a description of currently allo-
cated memory (provided by Pronto’s allocator). Pronto
always keeps the latest snapshot on NVMM to ensure
fast recovery.

The application can change the frequency of snapshots
to trade-off between snapshot overhead and recovery
time. We describe the mechanics of taking a snapshot
in Section 4.3 and measure its performance impact in
Section 5.7.

3.2 Using Pronto
Pronto offers a simple C++ interface for creating per-
sistent data structures with ASL support. The interface
provides access to Pronto’s volatile memory allocator, a
mechanism to specify the boundaries of operations that
the ASL will record, and a directory that allows access-
ing persistent data structures across restarts. Table 1
summarizes the interface.

Programmers can use Pronto to add persistence to
both sequential (single-threaded) and concurrent (thread-
safe) volatile data structures. This section provides an
example of using Pronto for each case and elaborates on
the requirements for using Pronto with concurrent data
structures.

3.2.1 Adding Pronto to Sequential Data Struc-
tures. Adding Pronto to a volatile single-threaded data
structure is straight-forward.

The programmer adds Pronto by creating a wrapper
object for the volatile data structure, and the wrapper
object inherits from PersistentObject. Extending the
PersistentObject superclass provides a naming mech-
anism to enable programmers to access instances of the
class across restarts using a unique name. Any instance
of this new class is a persistent object, where the latest
consistent state of its internal data structure survives fail-
ures and each public method executes as a failure-atomic
operation.

The wrapper object contains an instance of the original
data structure (i.e., the online image) and wrapper meth-
ods for every function in the data structure’s API. For
any method that updates the wrapped data structure,
the programmer inserts a special op_begin() at the top
of the corresponding wrapper method and op_commit()
at the end. The op_begin() method triggers semantic
log entry creation and takes a copy of the input ar-
guments, while the op_commit() method commits the
operation. Note that Pronto only requires instrumenting
public update (e.g., non-const) methods, while existing
NVMM libraries (e.g., PMDK [25]) require tracking all

PersistentObject(name) Every persistent object must inherit from this class. Pronto identifies objects by their unique
name (provided to the constructor) and maintains a persistent directory for mapping names to
references to objects.

get_object<T>(name) Uses the persistent directory to return a reference to the persistent object of type <T> identified
by name.

op_begin(args) Marks the beginning of a failure-atomic operation, which accepts args as input, and initiates
ASL.

op_commit() Waits for the operation’s ASL to complete and then marks the semantic log entry as committed.
palloc(size) Programmers must replace malloc(), realloc() and free() with palloc(), prealloc() and

pfree() for managing memory for their data structures (e.g., using GCC’s –wrap flag) to allow
Pronto create periodic asynchronous snapshots.

prealloc(ptr, size)
pfree(ptr)

Table 1. Pronto’s programming interface

template <class T>
class PVector : PersistentObject {

// Alloc conforms with STL allocator
// Alloc . allocate () calls palloc ()
// Alloc . deallocate () calls pfree ()
vector < T, Alloc <T> > * vVector ;

public :
PVector (string name): PersistentObject (name) {

// alloc is an instance of Alloc <T>
// *new* uses palloc () for allocation
vVector = new vector < T, Alloc <T> >(alloc);

}
void push_back (const T& value) {

op_begin (value);
vVector -> push_back (value);
op_commit ();

}
void pop_back () {

op_begin ();
vVector -> pop_back ();
op_commit ();

}
size_t size () const {

// no logging needed for read -only ops
return vVector ->size ();

}
};

Figure 4. Creating a template persistent vector using
the STL’s vector container and Pronto.

writes to NVMM. Pronto uses a simple source preproces-
sor to provide every op_begin() with a pointer to the
public method that calls into it, which enables mapping
semantic logs to their matching public methods during
recovery. This preprocessor also generates code to con-
vert each semantic log entry to a corresponding method
call and automate replaying semantic logs at recovery.
Pronto assumes that the implementation of the data
structure does not change before recovery.

Finally, the programmer must use Pronto’s memory
allocator to manage memory for the wrapped data struc-
ture.

Figure 4 is an example of using Pronto’s APIs from
Table 1 to create a persistent version of the vector con-
tainer from the GNU C++ Standard Template Library
(STL). We create a wrapper class (PVector) for the
stl::vector that extends PersistentObject. Since
STL containers support user-specified allocators, we
pass a reference to Pronto’s allocator to the construc-
tor of the stl::vector. Update methods of the STL
vector are wrapped and surrounded by op_begin() and
op_commit(). For the sake of simplicity, we only illus-
trate the implementation of the constructor, push_back()
and pop_back() methods.

3.2.2 Adding Pronto to Concurrent Data Struc-
tures. Pronto supports a wide class of concurrent data
structures that synchronize internally using locks. So
long as they meet the standard correctness condition of
linearizability, Pronto can make them resilient to power
outages with simple code changes. In a linearizable (con-
current) data structure, each method appears to occur
at some atomic instant in time between its invocation
and return; putting the operations in this order gives us
a linearization order, and the concurrent data structure
must behave exactly like a sequential data structure
executing the operations in this order [19, 38].

Converting a thread-safe data structure in Pronto fol-
lows the exact same requirements as a sequential data
structure, save for the call to op_commit(), which, in-
stead of being called in the wrapper object, is called
within the wrapped data structure at a programmer
identified point. For proper integration with Pronto,
the order in which operations call op_commit() must
be a valid linearization order. Put more simply, if two
data structure operations cannot (semantically) com-
mute (e.g., performing insert(𝑘1,𝑣1) and erase(𝑘1)
against a hash-map), then their calls to op_commit()
must occur in program order.

In practice, this requirement can be trivially met by
ensuring that the lock that protects the operation’s
data structure modifications also protects the call to

template <class T>
class HashMap : PersistentObject {

const unsigned Buckets = 32;
unordered_map <T, T, hash <T>, equal_to <T>,

Alloc <T>> * vMaps [Buckets];
mutex locks [Buckets];

public :
HashMap (string name): PersistentObject (name) {

// initialize vMaps and per - bucket locks
}
void insert (const T& key , const T& value) {

op_begin (key , value);
unsigned b = hash <T >{}(key) % Buckets ;
locks [b]. lock ();
vMaps [b]-> insert (make_pair (key , value));
op_commit ();
locks [b]. unlock ();

}
};

Figure 5. Creating a persistent, concurrent hash-map
using Pronto and C++ STL’s unordered_map container.

op_commit(). As a consequence, programmers can pre-
serve their existing isolation for operations and avoid
disruptive changes to the program to use a new synchro-
nization interface.

If Pronto is properly integrated into a linearizable
data structure according to the above requirements, it
generates a durably linearizable data structure [28], in
which the data structure’s operations not only appear
to atomically occur in between their invocation and
response, but also become persistent at the same instant.
For blocking data structures that use locks to enforce
linearizability, Pronto provides failure-atomicity with no
loss of concurrency.

Figure 5 shows an example of using Pronto with a
thread-safe, concurrent hash-map. Since STL containers
are not thread-safe, we use locks to serialize accesses to
each bucket of the hash-map. By committing semantic
logs before releasing the per-bucket locks, we force seman-
tic logs to commit in the order that the program performs
non-commutable operations (e.g., insert(𝐾1, 𝑉1) and
insert(𝐾1, 𝑉2)), but in either order for operations
that commute (e.g., insert(𝐾1, 𝑉1) and insert(𝐾2,
𝑉2) when 𝐾1 ̸= 𝐾2).

3.2.3 Requirements for Concurrent Data Struc-
tures. The following equation formalizes the require-
ment for committing ASL entries for concurrent updates
to a linearizable data structure. 𝐻𝑆 and 𝐻𝑃 denote se-
quential and parallel execution histories, respectively,
and 𝐻𝑆 ≈ 𝐻𝑃 denotes that 𝐻𝑆 is a valid linearization
order of 𝐻𝑃 . 𝑜𝑝1 and 𝑜𝑝2 represent two atomic oper-
ations that occur in both 𝐻𝑆 and 𝐻𝑃 . The relations
<𝐻𝑆

and <𝑐𝑜𝑚𝑚𝑖𝑡 refer to the 𝐻𝑆 order and the Pronto

commit order respectively.

𝑖𝑓 ∀𝐻𝑆≈𝐻𝑃
𝑜𝑝1 <𝐻𝑆

𝑜𝑝2 𝑡ℎ𝑒𝑛 𝑜𝑝1 <𝑐𝑜𝑚𝑚𝑖𝑡 𝑜𝑝2
(1)

This requirement allows Pronto to reconstruct per-
sistent objects after failures by replaying semantic logs
sequentially according to their commit order – the com-
mit order of semantic logs represents a valid sequential
execution order of their corresponding failure-atomic
operations.

4 Implementation
This section elaborates on the implementation of Pronto
and revisits the most interesting technical challenges
we addressed in building it by answering the following
questions:

∙ How to minimize the programming effort of build-
ing persistent objects from volatile ones?

∙ How to implement ASL with minimum overhead
on the critical execution path?

∙ How to identify modified memory pages to effi-
ciently create periodic, asynchronous snapshots?

∙ How to store asynchronous, consistent snapshots
of off-the-shelf volatile data structures with minor
changes to the source code?

∙ How to use semantic logs and snapshots to recon-
struct persistent objects after failures?

Pronto comprises a user-level C++ library and a sim-
ple source preprocessor. Below we describe how the li-
brary manages logs, allocates memory, takes snapshots,
and recovers from failures. Then we describe the prepro-
cessor.

4.1 Asynchronous Semantic Logging
To reduce the overhead of semantic logging on the crit-
ical path, Pronto creates a dedicated background ASL
thread for every foreground thread. Foreground threads
notify ASL threads upon starting a new failure-atomic
operation by calling op_begin() and sync up with them
to ensure the persistence of semantic logs before com-
mitting the log entry.

Pronto uses pthread_create() to create an ASL
thread for every foreground thread, evenly distributes
foreground threads over available physical cores, and
co-locates foreground threads with their ASL threads.
Sharing physical cores (i.e., running as hyperthreads)
enable foreground and ASL threads to share L1 cache-
lines and synchronize at low cost. Figure 6 shows the
assignment of foreground and ASL threads to CPU cores
and demonstrates the synchronization points between
the two threads.

C0 C1

C2 C3

CPUm

Threadi

ASL Threadi

HyperThread0

HyperThread1 Time
User code

Semantic logging

Waiting for a new update operation

Synchronization

Figure 6. Pronto evenly distributes user threads over
physical CPU cores and co-locates each one with its ASL
thread.

Pronto’s implementation aims to minimize the over-
head of ASL on the critical path and trades CPU and
recovery time for faster execution of update operations.
However, multiple user threads can share a single ASL
thread for programs that are read-dominated or less
sensitive to ASL overhead.

Pronto stores semantic logs in NVMM-resident files
and creates a separate file for each persistent object.
These files comprise a header and a body. The header
includes the commit number of the last committed se-
mantic log and relative pointers to the head and tail
of the file’s body. Having a separate file for each object
reduces the contention on the log’s header. The body
stores semantic logs in a circular buffer.

Semantic log entries contain a pointer to the method
they must replay during recovery, as well as a shallow
copy of its input arguments. Making a copy is necessary.
Otherwise, the application might change a value after
the log entry is created, leading to a different result
during recovery.

Pronto uses DAX mmap() to directly map the file to
the program’s virtual address space, bypass the storage
stack, and access the NVMM pages via load/store [33].
ASL threads use non-temporal store instructions fol-
lowed by memory barriers to avoid cache pollution while
appending semantic logs to the mapped pages, which
also improves the performance of creating large seman-
tic logs. Support for DAX mmap() is currently available
through the ext-4, XFS, and NOVA [46, 52] file systems.

4.2 Memory Allocator
Pronto uses a custom memory allocator for the volatile
online image of persistent objects to facilitate creating
asynchronous snapshots. The allocator serves allocations
from a contiguous volatile memory pool, which could
reside on NVMM if the DRAM capacity is not sufficient,
and maintains a bitmap for the pool to differentiate be-
tween used and unused regions. The bitmap granularity
is 4 KB.

Pronto serves allocations by regions from an extensible
volatile memory pool, which can expand by mapping
huge-pages into the program’s address space. Pronto

uses huge-pages to reduce the number of page-table en-
tries and thus, the overhead of creating asynchronous
snapshots. The allocator always maps the volatile mem-
ory pool at the same virtual address to keep pointers
valid throughout restarts and allow recovering objects
from snapshots. Pronto maintains per-object allocators
that serve allocation and free operations through per-
core free-lists to reduce contention, allocation latency,
and synchronization overhead. Free-lists sort memory
regions based on their size and assign them into buckets
to reduce lookup time. Each bucket holds a pointer to a
doubly-linked list of unused memory regions [5, 15].

4.3 Periodic Snapshots
To create a persistent snapshot, Pronto must freeze the
execution at a point of time where all persistent objects
are in a consistent state (i.e., before or after running an
update operation), and then copy the entire online image
to NVMM. The process of creating snapshots comprises
a synchronous and an asynchronous phase.

During the synchronous phase, Pronto freezes persis-
tent objects in a consistent state by blocking new update
operations and awaiting completion of those that are yet
to be committed. It then streams the state of allocation
tables, including the bitmap and free-lists, to NVMM
and simultaneously marks the allocated volatile pages
as read-only.

Next, Pronto unblocks new update operations and
starts the asynchronous phase, where it saves the read-
only volatile pages to NVMM. Pronto uses multiple
threads to expedite the copying. The threads examine
the allocated 2 MB volatile pages, identify its used 4 KB
regions using the bitmap, stream the used regions to
NVMM, and make each page writable as soon as the
NVMM copy is durable. An update operation that at-
tempts to write to a read-only volatile page will trigger a
page-fault handler, which takes over copying the target
page to NVMM before marking it writable and returning
to the operation that caused the page-fault.

Pronto creates full snapshots for the sake of simplicity.
To support incremental snapshots, it can keep volatile
pages read-only until modified by an update operation,
and only include writable (i.e., modified) pages in new
snapshots.

For every persistent object, Pronto also records the
identifier of its last committed operation and the tail
offset of its semantic log at the time of creating the
snapshot. It then recycles any log entry that precedes
this tail offset for creating new semantic logs.

4.4 Recovery Management
After a crash, Pronto uses a combination of ASL and
durable snapshots to restore persistent objects to their

state before the failure. It uses the most recent snapshot
to restore the latest durable state of its memory pool.

Next, it replays semantic logs against their correspond-
ing persistent objects in commit order. For every per-
sistent object, Pronto only replays semantic log entries
recorded after the latest snapshot. Once it replays all
log entries, it passes control to user code.

Pronto uses multiple threads to recover persistent
objects and assigns a subset of the persistent objects to
each recovery thread. Pronto uses a valid linearization
order, which is dictated by the commit order of update
operations, to replay the semantic logs. Since the original
execution of the program is deadlock-free and Pronto
replays update operations in a valid linearization order,
Pronto’s recovery is deadlock-free.

4.5 Preprocessor
Pronto’s preprocessor reduces the programming effort
of using Pronto by automatically generating the code
for translating method calls into matching semantic logs
during execution and decoding semantic logs to matching
method calls during recovery.

For every public method that updates the data struc-
ture, the preprocessor passes a pointer to the method as
an extra argument to op_begin(). It then extends these
data structures with a new function that creates seman-
tic logs. These functions, which ASL uses at runtime,
store all the input arguments provided to op_begin()
as well as the pointer to the caller public method in a
semantic log entry.

The preprocessor creates a member function for each
persistent data structure to enable replaying semantic
logs during recovery. This function translates semantic
log entries of its data structure to the corresponding
public method calls.

The preprocessor also overloads the new operator of
persistent data structures (i.e., every class that extends
PersistentObject) to allocate all memory the data
structure uses with Pronto’s allocator.

5 Evaluation
In this section, we evaluate Pronto’s performance to
provide answers to the following questions:

∙ What is the performance overhead of using Pronto
to add persistence to volatile data structures?

∙ Can programmers use Pronto to build persistent
data structures that outperform highly-optimized
NVMM data structures?

∙ What is the performance benefit of using Pronto
as the failure-atomicity mechanism for existing
applications?

∙ How much is the speedup of replacing existing
NVMM libraries with Pronto for persistent data
structures?

∙ How much is the storage overhead of Pronto’s ASL
and periodic snapshots?

∙ When is ASL most effective at hiding the persis-
tence cost?

∙ What is the cost of creating asynchronous snap-
shots for data structures with either sequential or
random memory access patterns?

∙ How does the size of data structures, the frequency
of snapshots, and the number of threads impact
the recovery time?

5.1 Testbed Setup
The evaluation platform has two Intel Cascade Lake-SP
(engineering sample) processors with 12 physical cores
and hyper-threading enabled that run at 2.2 GHz. The
platform has 192 GB of DRAM and 1.5 TB (6 ×256 GB)
of NVMM (Intel Optane DC 2666 MHz QS [23, 29])
on each socket. All benchmarks run on one processor,
avoiding NUMA-related overheads in accessing NVMM.
We use ext4 to provide direct-access (DAX) to NVMM
pages [33].

5.2 Persistence for Volatile Data Structures
We measure the overhead of using Pronto to add persis-
tence to both sequential (single-threaded) and concurrent
(thread-safe) volatile data structures.

5.2.1 Overhead for Sequential Data Structures.
Our first experiment uses four containers from the GNU
C++ Standard Template Library (STL) to evaluate
the overhead of integrating Pronto with volatile data
structures. These containers are:

∙ map: a sorted map that stores key-value pairs in a
red-black tree.

∙ unordered_map: an unordered hash-table that stores
key-value pairs.

∙ vector : a resizable array data structure.

∙ priority_queue: an adapter for the vector container
that creates a max-heap from the inserted elements.

Since STL containers provide deterministic update
operations and support using user-defined allocators, we
create persistent versions of each container by creating a
wrapper class that extends Pronto and wraps calls to the
container’s public methods, similar to the wrapper for
STL’s vector in Figure 4. To measure the performance of
vector and priority_queue, we insert 5 million elements
to both versions of each container. We use traces from

256 512 1K 2K 4K
Data size (bytes)

0

2

4

6

8

10

A
ve

ra
ge

la
te

nc
y

(µ
s)

Map-P

Map-V

UMap-P

UMap-V

256 512 1K 2K 4K
Data size (bytes)

0

2

4

6

8

10

PQ-P

PQ-V

Vector-P

Vector-V

Figure 7. Measuring the overhead of using Pronto to
add failure-atomicity to the volatile benchmarks. The
horizontal axis is the data size of insert operations (ex-
cluding the key for Map and Unordered Map bench-
marks) in bytes and the vertical axis is the average
latency in microseconds. V and P stand for Volatile
and Persistent, respectively. UMap and PQ represent
the Unordered Map and Priority Queue data structures,
respectively.

YCSB [13] to evaluate map and unordered_map con-
tainers. The traces comprise 5 million insert operations
with 32-byte keys.

We measure the average latency of both volatile and
persistent versions of the benchmarks to quantify the
performance overhead of Pronto. Figure 7 shows how
the average latency for the benchmarks change as we
increase the size of data inserted into the STL containers.
We create a snapshot for persistent benchmarks at least
once every 15 seconds.

For small operations, such as inserting small values
into the vector, Pronto imposes more overhead (up to
28×) as the synchronization between the user and the
ASL thread is relatively more expensive, and the latency
of the operation is significantly smaller than persist-
ing the semantic log. The synchronization overhead is
minimal for programs with more complex logic like the
priority queue and the map. Moreover, ASL threads use
non-temporal stores followed by memory fences to create
semantic logs (i.e., copying pointers to operations and
their input data to NVMM), which perform poorly for
small writes and increase the relative overhead of ASL
for small operations.

Therefore, the overhead of Pronto is significant for
small operations (e.g., 28× for inserting 256-byte values
into STL’s vector) and lowest for programs with compute-
intensive operations and large memory footprints (e.g.,
3.2× for adding key-value pairs with 4 KB values to
STL’s Map).

5.2.2 Concurrent Data Structures. Our next ex-
periment uses the persistent hash-map implementation
from Figure 5, which adds locking to 32 instances of
STL’s unordered_map container to support concurrent
operations, and compare its throughput against the
volatile version of the hash-map to measure Pronto’s
scalability. We use jemalloc [15] as the allocator for the
volatile hash-map since thread-safe malloc uses an in-
ternal lock and serializes concurrent accesses. For the
persistent hash-map, we create a snapshot at least once
every 10 seconds. Figure 8 shows the average through-
put for inserting 5 million key-value pairs with 1 KB
values to the hash-map implementations – as we increase
the number of threads (from 1 to 8), both volatile and
Pronto versions of the concurrent hash-map show similar
scalability.

5.3 NVMM-Optimized Data Structures
Our next experiment compares the performance of Pronto
against NVMM-optimized data structures. We use the
YCSB traces from Section 5.2 to compare the perfor-
mance of the failure-atomic versions of STL’s map and
unordered_map containers against PMEMKV [26], which
is an NVMM-optimized key-value store. We configure
PMEMKV v0.3x to use its kvtree2 storage engine, which
adopts undo-logging to implement failure-atomic up-
dates. The persistent map and unordered_map contain-
ers outperform PMEMKV and provide up to 3.83× and
3.77× lower latency, respectively. Figure 9 summarizes
the results and reports the average latency of inserting
key-value pairs in microseconds.

5.4 Optimizing Persistent Data Structures
To demonstrate the performance benefit of using Pronto
to optimize existing persistent data structures, we modify
RocksDB 5.17 [16], a persistent key-value store library,
and replace its default failure-atomicity mechanism (redo-
logging) with ASL. Using write-dominant (YCSB A
with 50% reads and 50% writes) and read-dominant
(YCSB B with 95% reads and 5% writes) traces from
YCSB, we compare the performance of the modified
version of RocksDB against its original version with syn-
chronous and asynchronous writes. A synchronous-write
does not return unless its redo-log is durable, while an
asynchronous-write immediately returns once its redo-
log reaches the filesystem’s page-cache. As a consequence,
a failure may cause the last few asynchronous writes to
be lost.

We warm-up the key-value stores by inserting 5 million
key-value pairs (i.e., YCSB load phase) and then perform
5 million put/get operations based on the workload
characteristics (YCSB A and YCSB B). We use 4 KB
values for these experiments and configure Pronto in two
modes: Pronto-Full that uses a dedicated ASL thread

1 2 4 8

Number of Threads

0.0

0.5

1.0

1.5

2.0

T
hr

ou
gh

pu
t

(M
op

s/
se

c)

Volatile

Persistent

Figure 8. Measuring the throughput of the volatile and
persistent (Pronto) versions for the concurrent hash-map.
Numbers show throughput in millions of 1 KB inserts
per second.

256 512 1024 2048 4096

Value Size (bytes)

0

10

20

30

40

A
ve

ra
ge

L
at

en
cy

(µ
s)

HashMap + Pronto

Map + Pronto

PMEMKV

Figure 9. Comparing the performance of PMEMKV
against the persistent versions of STL’s map (Map +
Pronto) and unordered_map (HashMap + Pronto) con-
tainers.

1 2 4 8
Number of Threads

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
hr

ou
gh

pu
t

(M
op

s/
se

c)

Write dominant
(YCSB A)

Sync Async Pronto-Light Pronto-Full

1 2 4 8
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Read dominant
(YCSB B)

Figure 10. Comparing the performance of the NVMM-
optimized version of RocksDB (i.e., Pronto-Full and
Pronto-Light) against its original version with synchro-
nous and asynchronous writes using read-dominant and
write-dominant workloads from YCSB.

1 2 4 8
Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
hr

ou
gh

pu
t

(M
op

s/
se

c)

Write dominant
(YCSB A)

KaminoTx

PMDK

Pronto-Light

Pronto-Full

Pronto-Sync

1 2 4 8
Number of Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Read dominant
(YCSB B)

Figure 11. Comparing the performance of Pronto
against PMDK [25], and KaminoTx using the B+Tree
benchmark from KaminoTx [36]. We report the through-
put for (read and write) operations with 1 KB values.

for each benchmark thread, and Pronto-Light that uses
half the number of threads of the former version.

Figure 10 shows that both versions with Pronto (i.e.,
Pronto-Light and Pronto-Full) outperform RocksDB
with synchronous writes with a wide margin. Further-
more, Pronto-Full matches the performance of asynchro-
nous writes for both read-dominant and write-dominant
workloads, despite giving stronger guarantees on failure.

5.5 Comparing ASL against Undo-Logging
We use the concurrent, persistent B+Tree implementa-
tion from Kamino-Tx [36] to compare the performance
of Kamino-Tx and PMDK 1.5 [25], existing NVMM li-
braries that accomplish failure-atomic updates using
undo-logging, against Pronto. We create a new version
of the B+Tree by removing its failure-atomicity code
and wrapping it by a Pronto object, thereby making it
failure-atomic through Pronto. For the Pronto version of
the B+Tree, we create a snapshot after performing 50%

of the insert operations (around once every 5 seconds).
The Kamino-Tx and PMDK versions only persist the
last level of the B+Tree and reconstruct the internal
nodes after restarts.

Figure 11 shows the average throughput of running the
YCSB workloads from Section 5.4 against the Kamino-
Tx, PMDK, and Pronto versions of the B+Tree. We use
three Pronto modes for these experiments: Pronto-Full
that creates an ASL thread for every benchmark thread,
Pronto-Light that uses half the number of threads of
Pronto-Full, and Pronto-Sync that creates semantic-logs
synchronously.

In comparison to PMDK and Kamino-Tx, Pronto-
Full provides higher performance for the write-dominant
workload (YCSB A). Kamino-Tx does not scale when
running YCSB A as it uses a single persister thread.
For the write-dominant workload, Pronto-Sync closely
matches the performance of PMDK and outperforms
Kamino-Tx. Pronto-Full and Pronto-Sync offer slightly

0.1 1.0 10.0 100.0

Operation Latency (µs)

0

1

2

3

4

5

6

S
em

an
ti

c
L

og
gi

ng
L

at
en

cy
(µ

s)

Asynchronous

Synchronous

Figure 12. Comparing the latency of creating asynchro-
nous to synchronous semantic logs on the critical path.
The latency of volatile operations varies from 100 ns to
100 𝜇s, and the size of semantic log entries is 1 KB.

higher throughput for YCSB B (the read-dominant work-
load).

5.6 Sensitivity Analysis
We use a microbenchmark to measure the sensitivity of
ASL to the latency of the volatile operations. We vary
the operation latency from 100 ns to 100 𝜇s and report
the overhead of creating 1 KB asynchronous semantic
logs on the critical path.

Figure 12 shows the results and compares the cost
of ASL to synchronous semantic logging, where Pronto
creates the 1 KB semantic logs on the critical path and
before performing the volatile operations. We report
average latencies of 5 million operations across five runs,
and show the standard deviation atop each bar (the
small, horizontal bars in black).

The experiments show that for sub-microsecond oper-
ations, ASL falls short in hiding the persistence overhead
as the operation latency is a fraction of the cost of ASL.
For other operations, ASL moves the entire cost of cre-
ating semantic logs to the background and only exposes
a small fraction of semantic logging (i.e., committing
entries and transferring the operation arguments to the
ASL thread) to the critical path.

Note that the cost of persisting semantic logs and
committing them decreases as we increase the latency of
the volatile operations (i.e., the gap between consecutive
writes to the same NVMM address). This behavior is
due to how Intel Optane DC persistent memory handles
back-to-back writes to the same address [29].

5.7 Overhead of Snapshots
Snapshot performance is critical for Pronto because it
dictates the frequency at which programmers can create
snapshots, and thus the trade-off between execution and
recovery time. Here we use two micro-benchmarks to
quantify the impact of Pronto’s snapshot mechanism
on the average latency and the total execution time of
programs.

The first benchmark studies how the latency of the
synchronous and asynchronous steps of creating snap-
shots change in response to increasing the workload size.
Figure 13 (a) presents the outcome of this benchmark
that varies the workload size (i.e., size of the persis-
tent objects) from 2 MB to 16 GB and measures the
latency of both synchronous and asynchronous paths
of creating snapshots. The latency of the asynchronous
path grows linearly with the workload size, as the size
of memory regions that Pronto must persist on NVMM
increases. However, the latency of the synchronous path
only changes from 22 to 34 milliseconds. Thus, Pronto
only stalls those update operations that run during the
first few milliseconds of creating a new snapshot.

The other benchmark evaluates the impact of snap-
shots on the total execution time of programs that per-
form sequential or random 64-bit memory accesses (50%
read and 50% write). We vary the workload size and
run the benchmark with and without creating a snap-
shot to calculate normalized execution times. We vary
the frequency of creating snapshots between 2 ms and
16 seconds based on the size of the data structure. Fig-
ure 13 (b) shows the normalized execution time for this
benchmark. As the workload size increases, the impact
of creating snapshots on the execution time converges to
a constant: for programs with random memory access,
the constant overhead is about 10%, while programs
with sequential memory access only suffer from a 0.8%
increase of the execution time. The overhead of Pronto’s
snapshots is higher on the random-access benchmark
because randomly accessing memory while creating an
asynchronous snapshot escalates the chance of writing
to read-only memory pages, which increases synchro-
nous writes to NVMM as well as the impact of Pronto’s
snapshots on the total execution time.

5.8 Recovery Time
We use a new benchmark, which uses Pronto to imple-
ment failure-atomic quick-sort, to measure the impact
of data-structure size (i.e., size of the online image),
number of threads, and snapshot frequency on the re-
covery time. The benchmark uses quick-sort to sort a
large string array, comprising 1 KB strings. We vary the
number of elements in the array from 220 (1 GB) to 225

(32 GB), the number of sort threads from 1 to 8, and the
snapshot frequency from 2 to 32 seconds. Pronto uses
16 threads to load the snapshot and a single thread to
replay semantic logs during recovery.

These experiments show that the primary determinant
of recovery time for the failure-atomic quick-sort is the
object size, as the snapshot frequency and the number
of sort threads has no significant impact on the recovery
time. Pronto recovers the 1 GB and 32 GB objects in
less than 400 milliseconds and 7 seconds, respectively.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

The total size of the data structure in megabytes

101

102

103

104

A
ve

ra
ge

la
te

nc
y

(m
ill

is
ec

on
ds

)

(a) The relation between data size and snapshot latency

Synchronous

Asynchronous

2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

The total size of the data structure in megabytes

1.00

1.05

1.10

1.15

N
or

m
al

iz
ed

ex
ec

ut
io

n
ti

m
e

(b) Overhead of snapshots on total execution time

Sequential

Random

Figure 13. Measuring the impact of data size (i.e., total memory allocated by persistent objects) on the overhead of
Pronto’s periodic snapshots.

Pronto Volatile Memory NVMM
Structure Online Image Semantic Logs Snapshot
HashMap 4.48 GB 2.25 GB 4.38 GB
Map 4.23 GB 2.15 GB 4.13 GB
B+Tree 2.71 GB 0.70 GB 1.57 GB

Table 2. The storage cost of Pronto for HashMap and
Map data structures from Figure 9 and the B+Tree from
Figure 11. Snapshot cost only includes the space for the
active snapshot.

Structure Volatile Memory NVMM
PMEMKV 5.98 GB 5.31 GB
B+Tree + PMDK 1.65 GB 1.16 GB
B+Tree + KaminoTx 1.66 GB 2.32 GB

Table 3. The storage cost of PMEMKV from Figure 9
and the PMDK and KaminoTX versions of the B+Tree
from Figure 11.

5.9 Storage Cost
We use the benchmarks from Section 5.3 and Section 5.5
to compare the storage cost of Pronto against PMEMKV,
PMDK, and KaminoTx. We measure the volatile and
persistent memory footprints of Pronto data structures
and report the cost in Table 2. Similarly, we report
the storage cost of PMEMKV as well as PMDK and
KaminoTx data structures in Table 3. All numbers are
for single-threaded configurations with 1 KB values.

In contrast to PMEMKV, Pronto key-value stores
(HashMap and Map) require 27% less volatile mem-
ory, while using 22% more persistent storage. For the
B+Tree benchmark (Figure 11), Pronto’s volatile mem-
ory footprint is 61% higher than PMDK and KaminoTx.
Pronto’s persistent memory requirement for the B+Tree
is respectively 95% higher and 2% lower than PMDK
and KaminoTx.

It is worth to note that Pronto does not need to
store snapshots on NVMM as it creates snapshots asyn-
chronously and off of the critical path. Thus, Pronto can

utilize SSDs for snapshot storage, which would signifi-
cantly reduce its NVMM footprint (e.g., by up to 69%
for the B+Tree).

6 Related Work
A large body of research with a focus on NVMM impli-
cations on computer architecture [44, 56], system soft-
ware [52, 55], and programming support [11, 51] exists
that addresses different challenges of integrating NVMMs
with existing computer hardware and software. This
work, in particular, focuses on reducing the overhead
of adding failure-atomicity to volatile data structures
in systems equipped with both volatile and non-volatile
memories.

Researchers have built several persistent object li-
braries for NVMMs. NV-Heaps [11], Mnemosyne [51],
and PMDK [25] provide libraries that allow programs
directly and transactionally access NVMM. NVM Di-
rect [7] achieves similar goals and adds compiler support.
In contrast to Pronto, these systems require disruptive
changes to existing programs and impose the overhead
of transactional persistence on the critical path of exe-
cution.

Kamino-Tx removes the overhead of logging from the
critical path and provides atomic in-place updates by
maintaining two copies of persistent data [36]. It provides
the same set of programming interfaces as PMDK and
supports building highly available and reliable persistent
data structures via replication. Compared to Pronto, it
demands significant changes to existing programs; it also
requires persisting transaction and allocation metadata
in the critical path.

Atlas [9] automates enforcing failure-atomicity so long
as persistent data is only modified inside critical sec-
tions, which are surrounded by acquisition and release of
locks. NVthreads [20] provides similar failure-atomicity
guarantees by using the page table protection bits to
automatically track data modifications at the granularity
of virtual memory pages and implement copy-on-write.

JUSTDO [27] extends on the idea of failure-atomic criti-
cal sections and utilizes persistent CPU caches to reduce
the memory footprint of logs. In contrast, Pronto pro-
vides failure-atomic updates to data structures at the
granularity of method calls, uses its allocator to track
modified regions that it must persist on NVMM, and
moves logging off the critical path without requiring
hardware support.

Other work has focused on automatically creating per-
sistent versions of volatile data structures. In [28], the
authors explore a transform that takes a nonblocking,
volatile data structure and creates a persistent version by
transforming memory fences into cache-line flushes into
NVMM. In contrast to this work, Pronto supports block-
ing data structures and also avoids extraneous cache-line
flushes by moving most of the persistence instructions
off the critical path.

Periodic checkpoints [1] and persistent virtual mem-
ory (pVM [30]) are other means of providing failure-
atomicity to programs. However, they both require rig-
orous changes to the source code and enforce persistence
synchronously.

7 Conclusion
We have described Pronto, a system that adds persis-
tence to both sequential and concurrent volatile data
structures and reduces the overhead of durability on the
critical path of execution through asynchronous seman-
tic logging. Pronto shrinks the performance gap between
volatile and persistent data structures by trading recov-
ery time for faster execution. It allows programmers to
add failure-atomicity to existing code (e.g., GNU C++
STL containers) without requiring disruptive changes,
while the resulting persistent containers provide compa-
rable performance to the volatile versions. Furthermore,
our persistent version of the STL’s map container out-
performs PMEMKV, a persistent key-value store highly
optimized for NVMM, by up to 3.8×.

Acknowledgments
This work was supported in part by CRISP, one of six
centers in JUMP, a Semiconductor Research Corpora-
tion (SRC) program sponsored by DARPA. We would
like to thank Abhishek Bhattacharjee and the anony-
mous reviewers for their insightful feedback. We are also
thankful to Intel Corporation for hardware access.

References
[1] M. Alshboul, J. Tuck, and Y. Solihin. 2018. Lazy Persistency:

A High-Performing and Write-Efficient Software Persistency
Technique. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 439–451. ht
tps://doi.org/10.1109/ISCA.2018.00044

[2] Andy Rudoff. 2016. Deprecating the PCOMMIT Instruction.
Available at https://software.intel.com/en-us/blogs/2016/09
/12/deprecate-pcommit-instruction.

[3] Andy Rudoff. 2018. Persistent Memory Programming: The
Current State and Future Direction. Available at https:
//www.snia.org/sites/default/files/PM-Summit/2018/pres
entations/03_PMSummit_18_Rudoff_Final_Post.pdf.

[4] Anirudh Badam. 2013. How Persistent Memory will Change
Software Systems. Computer 46, 8 (August 2013), 45–51.
https://doi.org/10.1109/MC.2013.189

[5] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe,
and Paul R. Wilson. 2000. Hoard: A Scalable Memory Allo-
cator for Multithreaded Applications (ASPLOS IX). ACM,
New York, NY, USA, 117–128. https://doi.org/10.1145/37
8993.379232

[6] Kumud Bhandari, Dhruva R Chakrabarti, and Hans-J Boehm.
2012. Implications of CPU Caching on Byte-Addressable Non-
Volatile Memory Programming. Hewlett-Packard, Tech. Rep.
HPL-2012-236 (2012).

[7] Bill Bridge. 2015. NVM Support for C Applications. Available
at http://www.snia.org/sites/default/files/BillBridgeNVM
Summit2015Slides.pdf.

[8] Chad Thibodeau, Arthur Sainio, Mark Carlson and Alex Mc-
Donald. 2017. Containers and Persistent Memory. Available
at https://www.snia.org/sites/default/files/CSI/Containers-
and-Persistent-Memory-FInal.pdf.

[9] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhan-
dari. 2014. Atlas: Leveraging Locks for Non-volatile Memory
Consistency (OOPSLA ’14’). ACM, New York, NY, USA,
433–452. https://doi.org/10.1145/2660193.2660224

[10] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-
volatile Main Memory. Proc. VLDB Endow. 8, 7 (Feb. 2015),
786–797. https://doi.org/10.14778/2752939.2752947

[11] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M.
Grupp, Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson.
2011. NV-Heaps: Making Persistent Objects Fast and Safe
with Next-generation, Non-volatile Memories (ASPLOS XVI).
ACM, New York, NY, USA, 105–118. https://doi.org/10.1
145/1950365.1950380

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost,
Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coet-
zee. 2009. Better I/O Through Byte-addressable, Persistent
Memory (SOSP ’09’). ACM, New York, NY, USA, 133–146.
https://doi.org/10.1145/1629575.1629589

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ra-
makrishnan, and Russell Sears. 2010. Benchmarking Cloud
Serving Systems with YCSB (SoCC ’10’). ACM, New York,
NY, USA, 143–154. https://doi.org/10.1145/1807128.1807
152

[14] Intel Corporation. 2015. Intel/Micron 3D-Xpoint
Non-Volatile Main Memory. Available at
https://www.intel.com/content/www/us/en/architecture-
and-technology/intel-micron-3d-xpoint-webcast.html.

[15] J Evans. 2016. Scalable Memory Allocation using jemalloc,
2011. (2016). https://www.facebook.com/notes/facebook-
engineering/scalable-memory-allocation-using-jemalloc/480
222803919

[16] Facebook. 2017. RocksDB. http://rocksdb.org.
[17] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013.

MemC3: Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. In Presented as part of the
10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). USENIX, Lombard, IL, 371–
384. https://www.usenix.org/conference/nsdi13/technical-

https://doi.org/10.1109/ISCA.2018.00044
https://doi.org/10.1109/ISCA.2018.00044
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction
https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/03_PMSummit_18_Rudoff_Final_Post.pdf
https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/03_PMSummit_18_Rudoff_Final_Post.pdf
https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/03_PMSummit_18_Rudoff_Final_Post.pdf
https://doi.org/10.1109/MC.2013.189
https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/378993.379232
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
https://www.snia.org/sites/default/files/CSI/Containers-and-Persistent-Memory-FInal.pdf
https://www.snia.org/sites/default/files/CSI/Containers-and-Persistent-Memory-FInal.pdf
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
https://www.facebook.com/notes/facebook-engineering/scalable-memory-allocation-using-jemalloc/480222803919
http://rocksdb.org
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan

sessions/presentation/fan
[18] Brad Fitzpatrick. 2004. Distributed Caching with Memcached.

Linux Journal 2004, 124 (Aug. 2004). http://dl.acm.org/cit
ation.cfm?id=1012889.1012894

[19] Maurice P. Herlihy and Jeannette M. Wing. 1990. Lineariz-
ability: A Correctness Condition for Concurrent Objects.
ACM Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–
492. https://doi.org/10.1145/78969.78972

[20] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kim-
berly Keeton, and Patrick Eugster. 2017. NVthreads: Practical
Persistence for Multi-threaded Applications (EuroSys ’17’).
ACM, New York, NY, USA, 468–482. https://doi.org/10.1
145/3064176.3064204

[21] Intel. 2015. An introduction to pmemcheck. Available at
http://pmem.io/2015/07/17/pmemcheck-basic.html.

[22] Intel Corporation. 2016. Enterprise and Cloud Stor-
age Processor for the Digital Era. Available
at https://www.intel.sg/content/www/xa/en/storage/enter
prise-cloud-storage-processor.html.

[23] Intel Corporation. 2019. Intel Optane DC Persistent
Memory. Available at https://www.intel.com/content/ww
w/us/en/architecture-and-technology/optane-dc-persistent-
memory.html.

[24] Intel Corporation. 2019. Non-Volatile Memory. Available
at http://www.intel.com/content/www/us/en/architecture-
and-technology/non-volatile-memory.html.

[25] Intel Corporation. 2019. Persistent Memory Development Kit.
Available at http://pmem.io/pmdk/.

[26] Intel Corporation. 2019. PMemKV. Available at https:
//github.com/pmem/pmemkv.

[27] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016.
Failure-Atomic Persistent Memory Updates via JUSTDO
Logging (ASPLOS ’16’). ACM, New York, NY, USA, 427–
442. https://doi.org/10.1145/2872362.2872410

[28] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott.
2016. Linearizability of Persistent Memory Objects Under a
Full-System-Crash Failure Model. In Distributed Computing,
Cyril Gavoille and David Ilcinkas (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 313–327.

[29] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu,
Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu,
Subramanya R. Dulloor, Jishen Zhao, and Steven Swanson.
2019. Basic Performance Measurements of the Intel Optane
DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
arXiv:1903.05714 http://arxiv.org/abs/1903.05714

[30] Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan.
2016. pVM: Persistent Virtual Memory for Efficient Capacity
Scaling and Object Storage (EuroSys ’16’). ACM, New York,
NY, USA, Article 13, 16 pages. https://doi.org/10.1145/29
01318.2901325

[31] Kevin Oleary. 2016. How to Detect Persistent Memory
Programming Errors using Intel Inspector. Available
at https://software.intel.com/en-us/articles/detect-
persistent-memory-programming-errors-with-intel-
inspector-persistence-inspector.

[32] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and
Michael J. Freedman. 2014. Algorithmic Improvements for
Fast Concurrent Cuckoo Hashing (EuroSys ’14’). ACM, New
York, NY, USA, Article 27, 14 pages. https://doi.org/10.1
145/2592798.2592820

[33] Linux Kernel Organization. 2018. Direct Access for Files.
Available at https://www.kernel.org/doc/Documentation/fil
esystems/dax.txt.

[34] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and
Samira Khan. 2019. Pmtest: A Fast and Flexible Testing
Framework for Persistent Memory Programs. In Proceedings
of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems. ACM, 411–425.

[35] Mark Carlson. 2018. Persistent Memory: What Developers
Need to Know. Available at https://www.snia.org/sites
/default/files/SDCEMEA/2018/Presentations/Persistent-
Memory-for-Developers-SNIA-SDC-EMEA-2018.pdf.

[36] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee,
Yanqi Zhou, Ramnatthan Alagappan, Karin Strauss, and
Steven Swanson. 2017. Atomic In-place Updates for Non-
volatile Main Memories with Kamino-Tx (EuroSys ’17’).
ACM, New York, NY, USA, 499–512. https://doi.org/10.1
145/3064176.3064215

[37] Amirsaman Memaripour and Steven Swanson. 2018. Breeze:
User-Level Access to Non-Volatile Main Memories for Legacy
Software (ICCD ’18’). 413–422. https://doi.org/10.1109/IC
CD.2018.00069

[38] Maged M. Michael and Michael L. Scott. 1996. Simple, Fast,
and Practical Non-blocking and Blocking Concurrent Queue
Algorithms (PODC ’96’). ACM, New York, NY, USA, 267–
275. https://doi.org/10.1145/248052.248106

[39] Micron Technology. 2019. Breakthrough Non-Volatile Memory
Technology. Available at https://www.micron.com/about/e
merging-technologies/3d-xpoint-technology.

[40] Micron Technology. 2019. NVDIMM. Available at https:
//www.micron.com/products/dram-modules/nvdimm/.

[41] Mike Ferron-Jones. 2019. A New Breakthrough in Per-
sistent Memory Gets Its First Public Demo. Available
at https://itpeernetwork.intel.com/new-breakthrough-persis
tent-memory-first-public-demo/.

[42] Chandrasekaran Mohan, Don Haderle, Bruce Lindsay, Hamid
Pirahesh, and Peter Schwarz. 1992. ARIES: A Transaction
Recovery Method Supporting Fine-granularity Locking and
Partial Rollbacks Using Write-ahead Logging. ACM Trans.
Database Syst. 17, 1 (March 1992), 94–162. https://doi.org/
10.1145/128765.128770

[43] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles
B. Morrey III, Dhruva R. Chakrabarti, and Michael L. Scott.
2017. Dalí: A Periodically Persistent Hash Map. In 31st Inter-
national Symposium on Distributed Computing (DISC 2017)
(Leibniz International Proceedings in Informatics (LIPIcs)),
Andréa W. Richa (Ed.), Vol. 91. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 37:1–37:16.
https://doi.org/10.4230/LIPIcs.DISC.2017.37

[44] M. A. Ogleari, E. L. Miller, and J. Zhao. 2018. Steal but No
Force: Efficient Hardware Undo+Redo Logging for Persistent
Memory Systems. In 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 336–349.
https://doi.org/10.1109/HPCA.2018.00037

[45] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014.
Memory Persistency (ISCA ’14’). IEEE Press, Piscataway,
NJ, USA, 265–276. http://dl.acm.org/citation.cfm?id=266
5671.2665712

[46] pmem.io. 2018. Using Persistent Memory Devices
with the Linux Device Mapper. Available
at https://pmem.io/2018/05/15/using_persistent_memory
_devices_with_the_linux_device_mapper.html.

[47] Andy Rudoff. 2017. Persistent Memory Programming.
USENIX Association 42, 2 (2017), 34–40.

[48] Andy Rudoff. 2017. Persistent Memory: The Value to HPC
and the Challenges (MCHPC’17). ACM, New York, NY, USA,

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/fan
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3064176.3064204
https://doi.org/10.1145/3064176.3064204
http://pmem.io/2015/07/17/pmemcheck-basic.html
https://www.intel.sg/content/www/xa/en/storage/enterprise-cloud-storage-processor.html
https://www.intel.sg/content/www/xa/en/storage/enterprise-cloud-storage-processor.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://pmem.io/pmdk/
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://doi.org/10.1145/2872362.2872410
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/1903.05714
https://doi.org/10.1145/2901318.2901325
https://doi.org/10.1145/2901318.2901325
https://software.intel.com/en-us/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector
https://software.intel.com/en-us/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector
https://software.intel.com/en-us/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1145/2592798.2592820
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.snia.org/sites/default/files/SDCEMEA/2018/Presentations/Persistent-Memory-for-Developers-SNIA-SDC-EMEA-2018.pdf
https://www.snia.org/sites/default/files/SDCEMEA/2018/Presentations/Persistent-Memory-for-Developers-SNIA-SDC-EMEA-2018.pdf
https://www.snia.org/sites/default/files/SDCEMEA/2018/Presentations/Persistent-Memory-for-Developers-SNIA-SDC-EMEA-2018.pdf
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1109/ICCD.2018.00069
https://doi.org/10.1109/ICCD.2018.00069
https://doi.org/10.1145/248052.248106
https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
https://www.micron.com/about/emerging-technologies/3d-xpoint-technology
https://www.micron.com/products/dram-modules/nvdimm/
https://www.micron.com/products/dram-modules/nvdimm/
https://itpeernetwork.intel.com/new-breakthrough-persistent-memory-first-public-demo/
https://itpeernetwork.intel.com/new-breakthrough-persistent-memory-first-public-demo/
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/128765.128770
https://doi.org/10.4230/LIPIcs.DISC.2017.37
https://doi.org/10.1109/HPCA.2018.00037
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://pmem.io/2018/05/15/using_persistent_memory_devices_with_the_linux_device_mapper.html
https://pmem.io/2018/05/15/using_persistent_memory_devices_with_the_linux_device_mapper.html

7–10. https://doi.org/10.1145/3145617.3158213
[49] David Schwalb, Markus Dreseler, Matthias Uflacker, and

Hasso Plattner. 2015. NVC-Hashmap: A Persistent and
Concurrent Hashmap For Non-Volatile Memories (IMDM
’15’). ACM, New York, NY, USA, Article 4, 8 pages. https:
//doi.org/10.1145/2803140.2803144

[50] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ran-
ganathan, and Roy H. Campbell. 2011. Consistent and
Durable Data Structures for Non-volatile Byte-addressable
Memory (FAST’11). USENIX Association, Berkeley, CA,
USA, 1. http://dl.acm.org/citation.cfm?id=1960475.196
0480

[51] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory (ASPLOS XVI).
ACM, New York, NY, USA, 91–104. https://doi.org/10.114
5/1950365.1950379

[52] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured
File System for Hybrid Volatile/Non-volatile Main Memories.
In 14th USENIX Conference on File and Storage Technologies
(FAST 16). Santa Clara, CA, 323–338.

[53] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang,
Khai Leong Yong, and Bingsheng He. 2015. NV-Tree: Reduc-
ing Consistency Cost for NVM-based Single Level Systems
(FAST’15). USENIX Association, Berkeley, CA, USA, 167–
181. http://dl.acm.org/citation.cfm?id=2750482.2750495

[54] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-
Tolerant Persistent Memory Programming Library. In 2019
USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA, 897–912.

[55] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and
Steven Swanson. 2015. Mojim: A Reliable and Highly-
Available Non-Volatile Memory System (ASPLOS ’15’). ACM,
New York, NY, USA, 3–18. https://doi.org/10.1145/269434
4.2694370

[56] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi.
2013. Kiln: Closing the Performance Gap between Systems
with and without Persistence Support. In 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO). 421–432.

https://doi.org/10.1145/3145617.3158213
https://doi.org/10.1145/2803140.2803144
https://doi.org/10.1145/2803140.2803144
http://dl.acm.org/citation.cfm?id=1960475.1960480
http://dl.acm.org/citation.cfm?id=1960475.1960480
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/1950365.1950379
http://dl.acm.org/citation.cfm?id=2750482.2750495
https://doi.org/10.1145/2694344.2694370
https://doi.org/10.1145/2694344.2694370

A Artifact Appendix
A.1 Abstract
This artifact description provides the necessary information
to build Pronto and run its performance and functionality
tests. First, we give pointers to the source code and describe
the hardware/software requirements for building and running
the experiments. Next, we introduce the datasets used in
evaluating Pronto, and then outline the necessary steps to
run the experiments from Section 5. Finally, we explain how
to read the evaluation results and introduce ways to configure
the benchmarks (e.g., to reduce the evaluation time).

A.2 Artifact check-list (meta-information)
∙ Algorithm: Asynchronous Semantic Logging (ASL)

and Asynchronous Checkpointing.
∙ Program: Pronto’s library (including debugging tools

and unit-tests), PMemKV v0.3x, RocksDB v5.17 (vanilla
and Pronto versions), and STL wrappers for Pronto.

∙ Compilation: GNU C/C++ Compiler (version 7.4.0).
∙ Data set: Traces from YCSB [13].
∙ Run-time environment: See Section 5.1 for details.
∙ Hardware: You can reproduce the evaluation results

by running the experiments on a machine equipped
with NVMM (see Section 5.1 for details). Otherwise,
you need a machine with at least 8 physical cores per
socket and 100 GB of memory to run all experiments.

∙ Execution: See A.5 for details.
∙ Metrics: Performance (latency and throughput) of

Pronto structures, recovery time, snapshot overhead,
and sensitivity of ASL to the operation latency.

∙ Output: Performance of running YCSB traces against
RocksDB, PMemKV, STL containers, and Pronto struc-
tures as well as the execution cost of the snapshots.

∙ How much disk space required (approximately)?
Running the evaluations inside Docker requires 10 GB.

∙ How much time is needed to prepare workflow
(approximately)? The experiments are ready to run
in about 10 minutes (creating the Docker image is
nonsupervised).

∙ How much time is needed to complete experi-
ments (approximately)? About 7 hours to run all
the experiments by running the Docker container.

∙ Publicly available? Code, datasets, unit-tests, tools,
and benchmarks are publicly available. The only ex-
ception is the B+Tree in Figure 11, which is Microsoft
proprietary and is not included in the archive.

∙ Archived (provide DOI)? 10.5281/zenodo.3605351.

A.3 Description
A.3.1 How delivered. The artifacts are publicly avail-
able through Zenodo archival repository. You can access the
code by using its DOI.

A.3.2 Hardware dependencies. We used two configura-
tions for the development and final measurements of Pronto.
In absence of access to real NVMM (e.g., Intel Optane DC),
you can use the development configuration.

∙ Evaluation setup: We have evaluated Pronto’s per-
formance using the testbed from Section 5.1. The eval-
uations, however, only require 8 physical cores per
socket, 50+ gigabytes of NVMM, and 50+ gigabytes
of DRAM. The benchmarks (almost always) use only
one socket, so you do not need access to more than one
CPU on multi-socket systems to run the benchmarks.

∙ Development setup: You need a machine with at
least 8 physical cores per socket and 100 GB of memory
to run all experiments. You will need to reserve 50 GB
of memory to emulate NVMM (see https://pmem.io/
2016/02/22/pm-emulation.html for instructions).

A.3.3 Software dependencies. We have tested Pronto
on Ubuntu 18.04 and created a list of required dependencies
for the test platform. Run dependencies.sh to build/install
the necessary binaries for building Pronto and running the ex-
periments. For other platforms, you need to manually install
the following (versions are for the development platform):

∙ jemalloc v5.1.0
∙ PMDK v1.4.1
∙ Python v2.7.15
∙ NumPy v1.16.0
∙ CMake v3.10.2
∙ Autoconf v2.69
∙ libz-dev v1.3.3
∙ libdaxctl-dev v61.2
∙ libndctl-dev v61.2
∙ pkg-config v0.29.1
∙ uuid-dev v2.31.1
∙ numactl v2.0.11

To run the unit-tests, you also need to install Google C++
Testing Framework. You can find the source code and depen-
dencies for the test framework in googletest and gflags.

A.3.4 Data sets. Pronto’s performance tests use traces
from YCSB [13] (workloads A and B) to measure both latency
and throughput of benchmark applications. All traces, as
well as YCSB, are publicly available.

A.4 Installation
Pronto uses Make for the compilation of the library and
accepts multiple configurations (e.g., size of the semantic
logs) via environment variables. The following commands
configure the compilation environment and build the release
version of Pronto using the GNU C/C++ compiler.
cd s r c
export DEBUG=1 # enab le s debug in fo rmat ion

updates the s i z e o f semantic−l o g s (g i gabyte s)
export LOG_SIZE=16

d i s a b l e s core pinning f o r ASL threads
export DISABLE_HT_PINNING=1

enab l e s synchronous semantic l o g g i n g
export PRONTO_SYNC=1

make # b u i l d s the s t a t i c l i b r a r y

https://zenodo.org/record/3605351
https://pmem.io/2016/02/22/pm-emulation.html
https://pmem.io/2016/02/22/pm-emulation.html

You can also use the commands below to run the unit-tests
and verify the basic functionality of Pronto’s library. Make
sure to reserve huge-pages for Pronto’s allocator and have an
NVMM file-system mounted at /mnt/ram.
mounts /dev/pmem1 as /mnt/ram (ext4−dax)
. / in i t_ext4 . sh 48 # p a r t i t i o n s i z e in GB

r e s e r v e s 1024 huge−pages f o r the a l l o c a t o r
echo 1024 | t e e −a / proc / sys /vm/nr_hugepages

b u i l d s and runs a l l unit−t e s t s
cd un i t && make && . / t e s t

A.5 Experiment workflow
There are two ways to run experiments. You can choose to
run all the experiments from Section 5 in a Docker container,
or customize and run individual experiments outside Docker.

A.5.1 Running experiments in Docker. Run the fol-
lowing commands to create a Docker image for Pronto and
run all the experiments in a container. Creating the image
and running the experiments take approximately 10 min-
utes and 7 hours, respectively. Note that the container uses
/dev/pmem1 as the NVMM device to run all the experiments
and stores results under /tmp. You can update init.sh and
run.sh or use Docker’s device mapping options to change
this behavior.
make sure to s t a r t with a c l ean r e p o s i t o r y
cd docker && . / arx iv . sh
docker bu i ld −−tag=pronto .
docker run −−p r i v i l e g e d −v /tmp : / tmp pronto

A.5.2 Running individual experiments. You can also
configure and run performance, recovery, and sensitivity ex-
periments individually and outside Docker. Follow the instruc-
tions in the README file under the benchmark directory in
the source repository for details.

A.6 Evaluation and expected result
We divide benchmarks into three categories: performance,
recovery, and sensitivity analysis. There are separate scripts
to run benchmarks in each category, and they all print results
in CSV format. Pronto’s Docker containers use the same
categories and store experiment results in three files:

∙ pronto-perf.csv
∙ pronto-recovery.csv
∙ pronto-sensitivity.csv

A.6.1 Performance. Pronto’s performance benchmarks
include STL, PMemKV, and RocksDB. For each benchmark,
the script prints out its name, workload, number of threads,
data size, iteration number, average latency, and average
throughput. For instance, below is the output for running
YCSB-A (one client thread) against RocksDB (sync mode),
where the data size is 256 bytes, and the average latency
and throughput across 5 runs are 6.5 𝜇s and 154 Kops/sec,
respectively.

rocksdb ,a-sync ,1 ,256 ,0 ,6336 ,157822
rocksdb ,a-sync ,1 ,256 ,1 ,6455 ,154895
rocksdb ,a-sync ,1 ,256 ,2 ,6326 ,158065
rocksdb ,a-sync ,1 ,256 ,3 ,7127 ,140297
rocksdb ,a-sync ,1 ,256 ,4 ,6206 ,161124

A.6.2 Recovery. There are three benchmarks:
1. The first benchmark measures the recovery time for

different workload configurations (see Section 5.8 for de-
tails). Pronto’s Docker containers skip this benchmark
by default, as it takes several hours to complete.

2. The second benchmark measures the overhead of snap-
shots on the execution time of programs. For each
iteration, the benchmark reports the access pattern
(random or sequential), size of the data structure (num-
ber of 2 MB pages), and execution time without/with
periodic snapshots.

3. The last benchmark evaluates the cost of snapshots on
the critical path. It varies the size of the data structure
from 2 MB to 16 GB and reports the cost of creating a
snapshot on and off the critical path in microseconds.

A.6.3 Sensitivity analysis. This benchmark varies the
latency of volatile operations from 100 ns to 100 𝜇s and
reports the cost of synchronous and asynchronous semantic
logging. The example below shows synchronous semantic
logging increases the execution time by 2,381 ns for a 1000 ns
operation and a 1024 byte semantic-log. The last column is
the standard deviation for the experiment across five runs.
1000 ,1024 , sync ,2381.81 ,1.19

A.7 Experiment customization
Refer to the documentation under the benchmark directory in
the code repository for details on configuring the benchmarks.

A.8 Notes
The documentation (i.e., README files) that accompanies
the source code contains additional information for using the
code as well as further instructions on setting up and running
the benchmarks.

A.9 Methodology
Submission, reviewing and badging methodology:

∙ http://cTuning.org/ae/submission-20190109.html
∙ http://cTuning.org/ae/reviewing-20190109.html
∙ https://www.acm.org/publications/policies/artifact-re

view-badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Programming Cost
	2.2 Performance Cost

	3 Design
	3.1 Pronto System Overview
	3.2 Using Pronto

	4 Implementation
	4.1 Asynchronous Semantic Logging
	4.2 Memory Allocator
	4.3 Periodic Snapshots
	4.4 Recovery Management
	4.5 Preprocessor

	5 Evaluation
	5.1 Testbed Setup
	5.2 Persistence for Volatile Data Structures
	5.3 NVMM-Optimized Data Structures
	5.4 Optimizing Persistent Data Structures
	5.5 Comparing ASL against Undo-Logging
	5.6 Sensitivity Analysis
	5.7 Overhead of Snapshots
	5.8 Recovery Time
	5.9 Storage Cost

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

